RNA Standards for Microarray Assays

NIST RNA Standards Meeting 28 March 2003

General Principles

- The question of standards needs to be addressed for each species that will be profiled.
- At present, the primary targets for standard development would be human, mouse, and rat because of their importance for medical research.
- Standards developed should be based on principles that are extensible to other species.
- For the purposes of this workshop, we will focus on defining approaches to developing an optimal human standard.

What is an RNA Standard?

- There are at least four standards that one might want to consider:
 - A common reference RNA to which all samples are compared
 - A common reference RNA that can be used to validate the measured expression level of particular genes on a particular platform
 - A common reference RNA which can be used to measure the performance of each platform
 - A common reference RNA that can be used as a "spiking" control to facilitate comparisons

A Good Standard Should

- Allow performance validation of any single platform over time.
- Facilitate comparison between various platforms used to assay gene expression.
- Be constructed in such a manner as to assure consistency over time.
- Include a well defined protocol describing how it is made and validated.
- Include two or more samples that allow one to make both absolute and relative measurements of the abundance of individual transcripts.
- Not be limited to hybridization-based approaches, but should be amenable to use with other assays such as QRT-PCR

Implementing a Standard

- An RNA standard would likely consist of two or more validated and qualified complex pools of RNA with some number of individual transcripts represented at some fixed absolute/relative concentrations.
- It was envisioned that NIST would maintain a primary standard and qualify secondary standards.

Questions for this Workshop

- How much of the genome should be covered by any standard?
- What performance metrics should be established for any standard?
- What mix of "real" RNA and synthetic/exogenous species should be included in any standard? What should the source of the standard be?
- What metrics would be used for validation of the standard?
- How the standard would be used for calibration and validation of various platforms?

Other views

- Matthew Marton, Rosetta Inpharmatics Properties and Uses of RNA Reference Standards in a Breast Cancer Clinical Study
- Paul Wolber, Agilent Technologies Scale-up of an RNA Reference Standard for High-Throughput Microarray QC
- Natalia Novoradosky, Stratagene Universal Reference RNA as a Standard for Microarray Expression Experiments

We need a Universal Standard for validating Platform Performance

Microarray Gene Chip Overview

Affymetrix GeneChip™ Expression Analysis

Workflow in an Array Experiment

Why we need a Universal Standard

Intensity-dependent Z-score

Intensity-dependent Z-scores for Identifying Differential Expression

Z > 2 is at the 95.5% confidence level

Validation

GenBank Accession	THC#	Role Guess	log2 (R*G_GM)	log2 (R/G_GM)	log2 (R/G_GM)
AA598611	THC103178	NOT Nurr1 T-cell nuclear receptor NOT	6.946429	-3.62	-7.21
N26311	THC888554	prostate differentiation factor placental	7.228571	-4.43	-6.65
AA454743	THC103123	kallikrein-like serine protease; zyme;	7.264286	-3.52	-6.25
W30988	THC942529	angiopoietin-like protein PP1158 (Homo	8.110714	-3.82	-5.52
T82817	THC100439	fra-1 gene product (AA 1-271) FOS-like	8.857143	-2.97	-4.88
N91003	THC960609	hypothetical protein	9.035714	-3.74	-4.75
AA487797	THC941216	pancreatic ribonuclease ribonuclease,	9.078571	-3.03	-4.25
W47073	THC958661	leukemia virus receptor 1 gibbon ape	9.239286	-2.94	-4.18
AA463610	THC960340	integrin alpha-2 preprotein (AA -29 to	9.314286	-4.53	-3.8
AA489839	THC103098	The KIAA0127 gene product is novel.	9.496429	-3.75	-2.97
W90073	THC862719	lbd2 sel-1 (suppressor of lin-12,	9.628571	-3.26	-2.74
AA428473	THC917810	EAR-1r orphan nuclear hormone	9.696429	-3.38	-2.61
AA425320	THC915844	hypothetical protein	9.739286	-2.08	-2.33
AA064959	THC900268	unnamed protein product	9.810714	-2.17	-2.23
AA448400	THC968020	plectin plectin 1, intermediate filament	10.03929	-2.17	-1.97
N46975	THC926818		10.16429	-1.85	-1.36
R26390	THC906738	p58 protein-kinase, interferon-inducible	10.78214	-2.43	-1.35
W02101	THC949515	hnRNP A2 protein {Homo sapiens},	10.975	1.51	0.84
W67140	THC943013		11.94286	1.74	0.96
AA457490	THC960290	Unknown (protein for IMAGE:4991480)	12.29286	1.77	1.23
AA450265	THC102108	proliferating cell nuclear antigen cyclin	12.575	1.67	1.66
W93717	THC100489	KIAA0008 gene product (Homo	12.93571	3.65	1.74
AA129552	THC969020	hepatocyte nuclear factor-3/fork head	13.48929	3.23	1.84
R94840	THC101449	Fanconi anemia complementation	14.61429	3.06	2.01
W48852	THC898140	gremlin gremlin homologue cysteine	14.64643	5.89	6.87

Why we need a Universal Standard

A Strawman for a Standard

- A set of 1040 synthetic DNAs ("alien DNA"?), at least 500bp in length, cloned into an expression vector (with poly-A), with the clones freely available.
 - Freely available clones
 - A wide range of GC content, etc.
- A set of 70-mers designed using open-source software
- A set of 25-mer/other public probes
- A collection of in vitro transcribed RNAs
- A set of standard (minimum 2) mixtures of these RNAs spanning a range of concentrations and fold-changes
 - Concentration range: fewer than "1 transcript per cell" to "1000s per cell" (8 samples for 8 log₁₀s)
 - Fold-change range: 1, \pm 1.1, \pm 1.2, \pm 1.4, \pm 1.6, \pm 1.8, \pm 2, \pm 4, \pm 8, \pm 16, \pm 32, \pm 64, on/off (26 points)
 - Multiple samples at each concentration/fold point with range of GC content (5?)
- 1040 = 8*26*5
- Associated Spiking Mixtures for inclusion in real RNA mixtures
- A set of "Standard RNAs" for each species that can serve as a background for these exogenous controls.

What's wrong with this picture?

- This is not a standard RNA for all comparisons between platforms, patients, labs, nor will it allow particular probes to be validated.
- This approach would allow instrument and software to be validated, but not choices for particular gene probes on the various platforms.
- This may not allow questions to be addressed such as how splice variants and gene families impact expression measurements on a particular platform.
- This will not be limited to a single species.

The Ultimate Standard?

- 30,000-50,000-100,000 DNAs (one for every gene and variant) cloned into an expression vector (with poly-A), with the clones freely available.
 - Freely available clones
- A set of 70-mers designed using open-source software
- A set of 25-mer/other public probes
- A collection of individual in vitro transcribed RNAs
- A set of standard (minimum 2) mixtures of these RNAs spanning a range of concentrations and fold-changes
 - Concentration range: fewer than "1 transcript per cell" to "1000s per cell" (8 samples for 8 log₁₀s)
 - Fold-change range: 1, ±1.1, ±1.2, ±1.4, ±1.6, ±1.8, ±2, ±4, ±8, ±16, ±32, ±64, on/off (26 points)
 - Multiple samples at each concentration/fold point with range of GC content (5?)
- A mixture of RNAs with fixed concentrations for platform and probe validation
- Individually-derived RNAs mixtures for each tissue, disease state, developmental stage,

Conclusions

- We need to define common terms to describe our sensitivity, specificity, etc. (in a quantitative way)
- Need to define standards based on particular questions
 - Quality control standards for array platforms to facilitate comparisons and assess dynamic range
 - Quantitative measure of expression for each gene
 - RNA Standards to allow absolute comparisons across datasets
 - Focused standards for a particular experiment